Information Physics: Notation & Symbols

August 9th, 2025

A unified glossary of notation for Collision Theory, Electromagnetic Voxel Lattice (EVL), Information Physics (IP), and Entropic Mechanics (EM).


Global Conventions

  • Scalars: italic Roman (e.g., t,x,y,z,E,St, x, y, z, E, S).
  • Vectors: bold lowercase/uppercase (e.g., x,V\mathbf{x}, \mathbf{V}).
  • Matrices / Linear maps: bold uppercase (e.g., A\mathbf{A}).
  • Operators (sets/classes): calligraphic O\mathcal{O}.
  • Specific operator instances: hatted lowercase (e.g., o^\hat{o}).
  • Fields / continuous densities: Greek letters (ϕ,ψ,ρ\phi, \psi, \rho).
  • Random variables / stochastic terms: sans serif or ξ,η\xi, \eta where standard.
  • Units: SI unless stated; use [][\cdot] to denote dimensions.

Examples:

  • Vector: V\mathbf{V}
  • Operator class: O\mathcal{O}
  • Specific operator: o^\hat{o}

Core Symbols (Cross-Framework)

SymbolMeaningTypeUnits
ccSpeed of lightconstantms1m\cdot s^{-1}
GGNewtonian gravitational constantconstantm3kg1s2m^3\cdot kg^{-1}\cdot s^{-2}
kBk_BBoltzmann constantconstantJK1J\cdot K^{-1}
\hbarReduced Planck constantconstantJsJ\cdot s
H0H_0Hubble constant (today)parameters1s^{-1}
Ωm,ΩΛ\Omega_m, \Omega_\LambdaDensity parametersparameters
pcp_cPercolation thresholdparameter
P\ell_PPlanck lengthconstantm
tPt_PPlanck timeconstants
v\ell_vVoxel spacingmodel param.m
τv\tau_vVoxel hop timemodel param.s
η\etaPositional energy multiplier (EM)scalar
V\mathbf{V}Intent vector (EM)vector
O\mathcal{O}Operation class (COB)set
o^\hat{o}Realized operationoperator
ϕ\phiInformation density / potentialfieldbitsm3bits\cdot m^{-3} or Jm3J\cdot m^{-3}
ρinfo\rho_{\mathrm{info}}Information-energy densityfieldJm3J\cdot m^{-3}
Γ\GammaBit processing rate densityfieldbitsm3s1bits\cdot m^{-3}\cdot s^{-1}
β0\beta_0Information-reaction normalizationparameters1s^{-1}
zcz_cPeak reaction redshiftparameter
wwReaction epoch widthparameter
qqPower-law scaling exponentparameter

1. Collision Theory (CDE)

Primary PDE (Collision–Diffusion Equation):

ϕt=D(z)2ϕRinfo(z)\frac{\partial \phi}{\partial t} = D(z)\,\nabla^2 \phi - R_{\mathrm{info}}(z)
  • ϕ\phi: information density (or potential)
  • D(z)D(z): effective diffusion coefficient vs. redshift
  • Rinfo(z)R_{\mathrm{info}}(z): information-reaction (Landauer-weighted) term

Information–reaction (Gaussian-in-redshift example):

Rinfo(z)=β0(1+z1+zc)qexp ⁣[(zzc)22w2]R_{\mathrm{info}}(z) = \beta_0\,\Big(\tfrac{1+z}{1+z_c}\Big)^{q}\,\exp\!\left[-\tfrac{(z-z_c)^2}{2w^2}\right]

Percolation threshold: pc=0.45p_c = 0.45

From reaction to energy density:

Γ    Rinfoτvg(ϕ),ρinfo  =  kBTln2Γ\Gamma \;\sim\; \frac{R_{\mathrm{info}}}{\tau_v}\,g(\lVert\nabla\phi\rVert),\qquad \rho_{\mathrm{info}} \;=\; k_B T\ln 2\,\Gamma

2. Electromagnetic Voxel Lattice (EVL)

Kinematics:

c  =  vτvc \;=\; \frac{\ell_v}{\tau_v}

Pattern maintenance (Landauer identity view):

E  =  mc2  =  NbitskBTln2E \;=\; mc^2 \;=\; N_{\mathrm{bits}}\,k_B T\ln 2

Conservation of Boundaries (COB):

O{OM(1),  OJ(2),  OS(3)}\mathcal{O} \in \{\mathcal{O}_M^{(1)},\;\mathcal{O}_J^{(2)},\;\mathcal{O}_S^{(3)}\}

3. Information Physics (IP)

Memory compression efficiency:

ηmem  =  IstoredItotal\eta_{\mathrm{mem}} \;=\; \frac{I_{\mathrm{stored}}}{I_{\mathrm{total}}}

Bandwidth–capacity (informal scaling placeholder):

Cmax    BαTβC_{\max} \;\propto\; B^{\alpha}\, T^{\beta}

4. Entropic Mechanics (EM)

System Entropy Change (scalar form):

SEC  =  OV1+η\mathrm{SEC} \;=\; \frac{\mathcal{O}\,\cdot\,\mathbf{V}}{1+\eta}

Entropic Gap (cosine-sim form):

EG  =  1cosθ(a,c)  =  1acacEG \;=\; 1 - \cos\theta\big(\mathbf{a},\mathbf{c}\big) \;=\; 1 - \frac{\mathbf{a}\cdot\mathbf{c}}{\lVert\mathbf{a}\rVert\,\lVert\mathbf{c}\rVert}

Entropic Equilibrium (multi-agent):

i(SECiWi)    steady,ddti(SECiWi)0\sum_i (\mathrm{SEC}_i\,W_i) \;\to\; \text{steady},\qquad \frac{d}{dt}\sum_i (\mathrm{SEC}_i\,W_i) \approx 0

5. EVL-Specific Notation Extensions

SymbolMeaningTypeUnits
ηlattice\eta_{\mathrm{lattice}}Positional energy multiplier due to latticescalar
θlat\theta_{\mathrm{lat}}Angle of operation relative to lattice fieldscalarrad
BvoxelB_{\mathrm{voxel}}Local magnetic field strength of a voxelparam.Tesla (T)
EtrapE_{\mathrm{trap}}Trap energy to dislodge particle from voxelparam.J

6. CDE-EVL Model Parameters

SymbolMeaningTypeUnits
A(z)A(z)Activity kernel (unit peak)function
E(z)E(z)Early chemistry gatefunction
S(z)S(z)Percolation suppression factorfunction
D0D_0Diffusion scale (fitted parameter)param.m2s1m^2\cdot s^{-1}
BBReaction normalization (fitted parameter)param.s1s^{-1}
zon,zoffz_{\text{on}}, z_{\text{off}}Early chemistry transition redshiftsparam.
kchemk_{\text{chem}}Chemistry transition steepnessparam.
zt,wtz_t, w_t2D→3D crossover redshift and widthparam.
p2D,p3Dp_{2D}, p_{3D}Percolation thresholds (2D/3D)param.
β2D,β3D\beta_{2D}, \beta_{3D}Critical exponents (2D/3D)param.
αhi,αlo\alpha_{\text{hi}}, \alpha_{\text{lo}}Diffusion power law exponentsparam.
zbreakz_{\text{break}}Diffusion transition redshiftparam.
λobs\lambda_{\text{obs}}Observed pattern scalesdataMly

Constants & Typical Numerical References

SymbolValue
cc2.99792458×1082.99792458\times 10^8 m·s⁻¹ (exact)
kBk_B1.380649×10231.380649\times 10^{-23} J·K⁻¹ (exact)
\hbar1.054571817×10341.054571817\times 10^{-34} J·s
GG6.67430×10116.67430\times 10^{-11} m³·kg⁻¹·s⁻²
P\ell_P1.616255×10351.616255\times 10^{-35} m
tPt_P5.391247×10445.391247\times 10^{-44} s
Ωm0\Omega_{m0}0.3150.315 (matter density parameter)
ΩΛ0\Omega_{\Lambda 0}0.6850.685 (dark energy density)
H0H_067.467.4 km·s⁻¹·Mpc⁻¹ (Hubble constant)
pcp_c0.450.45 (percolation threshold)
p2Dp_{2D}0.50000.5000 (2D percolation threshold)
p3Dp_{3D}0.24880.2488 (3D percolation threshold)
β2D\beta_{2D}0.16000.1600 (2D critical exponent)
β3D\beta_{3D}0.410.41 (3D critical exponent)
β0\beta_05.6234×10185.6234 \times 10^{-18} s⁻¹ (reaction norm.)
zcz_c5.35.3 (peak reaction redshift)
ww1.2791.279 (reaction epoch width)
qq1.21.2 (power-law scaling)

Typographic Notes & LaTeX Snippets

  • Vectors: v\mathbf{v}, α\boldsymbol{\alpha}
  • Operators: O\mathcal{O}, instances o^\hat{o}
  • Fields: ϕ(x,t)\phi(\mathbf{x},t), gradient ϕ\nabla\phi, Laplacian 2ϕ\nabla^2\phi
  • Percolation threshold: pc=0.45p_c = 0.45
  • Planck-scale lattice: c=v/τvc = \ell_v/\tau_v

Example block (copy/paste ready):

SEC:SEC=OV1+η,f(η)=11+η,EG=1acac.\textbf{SEC:}\quad \mathrm{SEC} = \dfrac{\mathcal{O}\,\cdot\,\mathbf{V}}{1+\eta}, \qquad f(\eta)=\dfrac{1}{1+\eta}, \qquad EG = 1 - \dfrac{\mathbf{a}\cdot\mathbf{c}}{\lVert\mathbf{a}\rVert\,\lVert\mathbf{c}\rVert}.

Versioning

  • v1.0 — Initial consolidated notation for review.
  • v1.1 — Added EVL-specific extensions.
  • v1.2 — Updated CDE-EVL model parameters, added collision theory constants, corrected percolation formulas and parameter values to match implementation.